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Abstract 

The two-step procedure for estimating triplet 
invariants from two-wavelength data [Klop, Krab- 
bendam & Kroon (1989). Acta Cryst. A45, 203-208] 
is applied to artificial data from the protein fer- 
redoxin. Two different probability distributions for 
the estimation of triplet invariants are compared. The 
possibility of estimating triplet phase invariants for 
which one or more reflections have a small heavy- 
atom contribution is demonstrated. The estimated 
triplet invariants are used in a convergence procedure 
and a generalized tangent formula. It is shown that 
accurate phase determination is possible even at low 
resolution. 

Introduction 

The solution of macromolecular crystal structures still 
relies heavily on additional experimental methods 
such as isomorphous-replacement and anomalous- 
scattering techniques. Several authors report that 
direct methods can be successfully applied for 
extension and refinement of protein phases using the 
tangent formula in combination with structure-factor 
phase information derived from anomalous scattering 
and isomorphous replacement. [e.g. Hendrickson 
(1973); Woolfson & Yao Jia-xing (1988), using the 
Sayre-equation tangent formula]. These methods 
require prior structural information as the heavy-atom 
substructure must be solved to obtain an initial set 
of structure-factor phases. 

In recent years, anomalous scattering and isomor- 
phous replacement have been integrated with direct 
methods to produce triplet invariant phase estimates 
(Kroon, Spek & Krabbendam, 1977; Hauptman, 
1982a, b; Giacovazzo, 1983). The integration of multi- 
wavelength anomalous scattering with direct methods 
was a further step in this direction (Karle, 1984; Klop, 
Krabbendam & Kroon, 1989a). In these methods, 
solution of the heavy-atom substructure is no longer 
required. 

In a previous paper (Klop et al., 1989a), it was 
shown that triplet invariants can be estimated from 
two-wavelength data using a conditional probability 
distribution based on Hauptman's joint probability 
distribution for single isomorphous replacement. 
In the first step of the procedure, wavelength- 
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independent structure-factor magnitudes and phase 
differences are calculated algebraically from 
wavelength-dependent diffraction data (see also 
Klop, Krabbendam & Kroon, 1989b). The wave- 
length-independent quantities thus obtained are 
used as conditional information in the second step 
of the procedure, the estimation of triplet invariants. 
In the present paper two different distributions for 
the estimation of triplet invariants are compared. The 
multi-wavelength phasing procedure is completed by 
using the estimated triplet invariants in a multi- 
solution procedure to generate structure-factor 
phases. 

Definitions 

In the following definitions a subscript i denotes the 
reciprocal vector hi. 
F~ Structure factor at wavelength Aj. 
F~ Complex conjugate of the structure factor for 

reflection -hi  at wavelength hi. 
FiN Structure factor based on the normal (i.e. non- 

anomalous) parts of the scattering factors of all 
atoms (including anomalously scattering 
atoms). 

F~ Structure factor based on the normal parts of 
the scattering factors of all atoms excluding 
anomalously scattering atoms. 

F~ Structure factor based on the normal parts of 
the scattering factors of the anomalously scatter- 
ing atoms. 

Other quantities are defined in the text. 

Method 

Two-wavelength data [F~[, [F~[, [F~2[ and [F~[ corre- 
sponding to reflections hi were calculated from the 
known coordinates of the protein ferredoxin (Sieker, 
Adman & Jensen, 1972) using the parameters listed 
in Table 1. Ferredoxin is a small iron-containing 
protein with a molecular weight Mr'--6000 which 
crystallizes in space group P21212~. The eight Fe 
atoms in the molecule are located in two Fe-S clusters 
and are assumed to be the only anomalous scatterers. 

Wavelength-independent structure-factor magni- 
tudes IF,~l, lUll, IFYl and phase differences V,---- 

N L N H ~oi - ~oi and 8i - ~o i - ~oi were calculated from the 
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Table 1. Parameters used to calculate artificial two- 
wavelength diffraction data 

Anomalous scatterers: Fe 
A~= 1.541/~ f~ = -1.18 f~ =3.20 
A2 = 1.743/~ f[ = -10.0 f~ = 6.00 
B[overall] = 10.0 
Resolution: 2/~ 
3328 reflections 

two-wavelength data as detailed by Klop et al. 
(1989a). The phases of FiN, F~, Fff are denoted by 
~pff, q~ and q~ff, respectively. For reflections with 
small heavy-atom contributions Fff we have FiN ~-- F~ 
and ~,~---0. The ambiguity that exists with two- 
wavelength data is resolved by choosing the heavy- 
atom lower estimate (HLE). The resulting structure- 
factor magnitudes were normalized and are denoted 
by IE, l, IE, l and IE, l. Reflections with IE, l<0.2 
were omitted from subsequent calculations. The 
remaining reflections were used to generate Z2 
relationships using the program SULTAN, an exten- 
ded and adapted version of MULTAN80 (Main et 
al., 1980). 

Define the triplet invariant cpN by ~ N =  
tp ~ + ~p~ + q ~  where ht + h2 + h3 = 0. In separate runs 
of SULTAN, triplet invariants tP N and their 
reliabilities I< can be estimated by the program 
according to two different probability distributions, 
viz (i) the conditional probability distribution 
P(~P~ IlEal, lull, ~, [ i =  1,3]) of the triplet invariant 
tp N given the normalized structure-factor magnitudes 
IE,~I and IE,~I and the phase differences ~,~; (ii) the 
conditional probability distribution P(cP N IlEal, 
8~ [ i =  1,3]) of the triplet invariant tP N given the 
magnitudes IE,nl and phase differences 8,. Distribu- 
tion (i) is given by Klop et al. (1989a) and reads 

P(¢,~ IIE,~I, IE,~I, u , [ i :  1,3]) 

= [27rio(K)]-' exp[K cos ( ~ -  ~)], (1) 

K > 0 (2a) 

where K and ~: follow from 

K cos ~: = X, K sin ~: = Y, 

and 

X = 2f loSlS2S 3 + 2131[ T1S2S3 c o s  l/1 

y =  

+S~T2S3 cos v2+S~S2T3 cos v3] 

+ 2/3 [T, cos  + cos + 

+ $1 T2 T3 cos ( ~2 + ;'3) ] 

+2flaT1T2Tacos(tq+ 1:2+ v3), (2b) 

2fll[ TlS2S3 sin Vl + Sl T2S3 sin v2 

+ SiS2 T3 sin v3] 

+ 2/32[ I"1T2S3 sin (~,~ + ~,~) 

+ T~S2 T3 sin (v~ + 1:3) + S~ T2 T3 sin (v2 + v3)] 

+ 2/337"1TzT3 sin (vl + ~2+ ~'3), (2c) 

where si IE, I, T, IE, I and the coeflficients/3k are 
given by Klop et al. (1989a). Distribution (ii) is 
defined as 

p ( ~ N  [Effl, ~, [ i =  1,3] ) 
= 

x exp {K u cos [ ~ N -  (8~+ 82+ 83)]}, (3) 

where K u is the Cochran kappa value of the heavy- 
atom structure, 

K" = 2n-1/21E ~ E~ E3nl (4) 

and n is the number of anomalous scatterers in the 
unit cell. 

If the heavy-atom structure-factor contribution for 
a reflection with index hi is small (IF"l < ~lF'lm~x), 
the index is denoted by h l. We can then discern four 
different types of Z2 relationships, characterized by 

h l+h2+h3 = 0  (5a) 

h~ + h2 + h3 = 0 (5b) 

h ~ + h ~ + h 3 = 0  (5c) 

h~+h~+h~=0 .  (5d) 

Because E ~  is small for a relationship of types (5b)- 
(5d), K H is small and distribution (3) will not be 
useful. The latter distribution can therefore only be 
used to estimate triplet invariants of type (5a). 
However, distribution (1) may yield triplet-invariant 
estimates for the other types as well. 

The estimated triplet invariants were sorted in 
decreasing order on K. Convergence mapping was 
performed based on these K values; origin-defining 
phases were chosen by the program. The enan- 
tiomorph is specified by the invariants so no enan- 
tiomorph-defining reflection is required. Magic 
integers were used to assign phases to several addi- 
tional reflections. 

The start sets of phases thus obtained were exten- 
ded and refined using a generalized tangent formula 

~, WkWh_k/(h, k sin (~pk+ ~Oh--k-- ~Th,k) 
k (6) 

t an  ~ h  --  ~ WkWh-kKh,k  COS ( ~ k - t -  ~0h- k --  ~:h,k) ' 
k 

where ~:h,k is the value of the triplet invariant ~N  
estimated via distribution (1) or (3) and 

Wh = ~h/5 for t~h< 5, Wh= I for ah-----5 

and (7) 

- + B D .  

The numerator and denominator of the tangent for- 
mula are denoted by Ah and Bh respectively. Note 
that Wh is the MULTAN80 default weight. 
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Table 2. Minimum kappa values Kmin, average kappa 
values (K), and average errors (~i"i'(error)) in the 
values of NSR triplet invariants (K >- Km~,,) estimated 
via distributions (1) and (3) for ferredoxin at 2 A. 

resolution 

N u m b e r  o f  reflections (N~f )  
N u m b e r  o f  -~2 relat ionships 

genera ted  ( N G R )  
N u m b e r  o f  strong -~2 relat ionships 

used (NSR)  

Dis tdbu t ion  used (1) 

flo 1.826 
~t -1"622 
~2 1"441 
~3 -1"250 

Kmi n 1.70 
(K) 2.63 

(q~i"it(e~or))(°) 35.1 

2225 

1 707 567 

80 000 

(3) 

1.22 
1.89 

34.4 

Table 3. Average error (@i""(error)) and number of 
invariants estimated via distribution (1) in intervals of 
K from 0 to 5.0forferredoxin at 2 A  resolution with 
(i) reflections with small heavy-atom contributions 
excluded, (ii) reflections with small heavy-atom contri- 

butions included 

N u m b e r  o f  invariants (~i~it(error))  (o) 
K (i) (ii) (i) (ii) 

0.0-0.5 942 174 3 750 106 81.4 87.6 
0.5-1.0 504 058 543 938 70.3 72.1 
1.0-1.5 151 820 176 843 56.8 59.6 
1.5-2"0 55 804 68 040 45.9 49.0 
2.0-2"5 24 132 30 321 37.2 40.3 
2.5-3-0 11 908 15 174 30.7 33.6 
3.0-3.5 6485 8388 27.3 29.1 
3.5-4.0 3753 4970 24.6 26.6 
4.0-4.5 2302 3040 22.8 24.1 
4.5-5.0 1548 1978 20.4 22.5 

Results 

The results obtained by application of the tangent 
formula can be judged from the conventional figures 
of merit (ABSFOM, PSIZERO, RESID and CFOM) 
and, since the structure is known, from the average 
error (tptan(error)) in the phases and in the invariants 
(qota"(error)). The former is calculated for phases q~ta, 
having a final weight w = 1.0 after tangent-formula 
phase generation and the latter is calculated for 
i n v a r i a n t s  t~ tan that are generated from these phases 
(i.e. (~) tan t an - -  tan ~ a n ) .  = ~p~ -1- ~P2 + The average error in the 
initial estimates of the triplet invariants is denoted 
by (~init(error)). 

Table 2 lists the average error (~i"it(error)) in the 
estimated triplet invariants for two different runs of 
the program using the distributions (1) and (3) respec- 
tively for ferredoxin. The data set consists of reflec- 
tions having spacings greater than 2 A and heavy- 
atom structure-factor contributions [FUl > ~61 E l l ] m a x  • 
The quality of the estimated triplet invariants is 
independent of the distribution chosen as can be 
verified by comparing the average error (~i~it(error)) 
for the two different runs of the program. This also 
applies for tests using data at other resolutions. 

Distribution (1) allows the estimation of invariants 
of which a contributing reflection has a small heavy- 
atom contribution F H [i.e. invariants of type (5b)- 
(5c)] as Table 3 shows. The present version of the 
program cannot use more than 80 000 invariants in 
the tangent expansion. This implies that only a small 
fraction of the invariants of type (5b)-(5c) can be 
used in a tangent expansion for a 2 A data set. In 
Table 4 results are given obtained by the application 
of distribution (1) to a 3 A, data set which includes 
356 reflections with [Fnl < ~61FH [max" T h e  approxima- 
tions F N = F  L and v--'0 were used for the latter 
reflections. This corresponds with F u = 0 so distribu- 
tion (3) cannot be applied. The second column of 
Table 4 pertains to the set of phases with the smallest 
average error (~t~"(error)) [which coincides with the 

Table 4. Results of tangent formula phasing offer- 
rodoxin at 3 ,~, resolution after estimating triplet 

invariants by distribution (1) 

Reflections with small heavy-a tom contr ibut ions  are inc luded in 
the data  set. Nsets is the n u m b e r  o f  start sets genera ted  by  the 
program. Nre r ( w =  1"0) is the number  o f  reflections that  have 
weight w = 1-0 after  tangent  fo rmula  phasing. 

N¢~¢ 956 hrref (w = 1"0) 467 
NGR 388 783 (~'a"(error)) (°) 23-7 
NSR 12 558 (~ta"(error)) (°) 20.1 
K,, m 0.80 ABSFOM 1" 1860 
(K) 1.49 PSIZERO 1-112 
(~i"it(error)) (°) 43.7 RESID 15.90 
Nsets 96 C FOM 2" 8634 

Table 5. Average magnitude of the error ( @'""( error)) 
in estimated values of triplet invariants arranged in 
descending order of (K) values for ferredoxin at 2 ~, 

resolution 

N u m b e r  
o f invar ian t s  Kma x /(rain (K) (@init(error)) (o) 

1000 27.14 7-12 9.15 11.7 
1000 7.12 5.88 6.41 15-5 
1000 5-88 5.26 5.54 17.6 
1000 5.26 4-85 5.04 19.2 
1000 4-84 4.53 4.68 20.4 

20 000 27.14 2.87 4.14 23.8 

80 000 27.14 1.70 2.63 35.1 

set with the smallest average error (q~tan(error)); two 
other sets had a slightly better combined figure of 
merit (CFOM)]. For this phase set, 43 reflections with 
IFHI < l~]fHlmax are phased with average weight 0.29 
after application of the tangent formula. The weighted 
average error for these reflections is 59.1 ° . In the 
following we will use distribution (1) to supply initial 
estimates for the values of the triplet invariants but 
we will exclude reflections with small heavy-atom 
contribution ([Fnl<~lFH[max) in view of the pro- 
gram limit referred to above. 

Table 5 shows the average errors in the 80 000 top 
ranking estimates for ferredoxin at 2 A resolution. In 
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Table 6. Tangent formula phasing for ferredoxin at 
21~ resolution for different magnitudes of error; s.d. is 
the standard deviation of the error in lEVI; "rank" 
indicates the position of the phase set when ranked 

according to decreasing COMFOM 

s.d. (%) 0 4 8 
Rl 0-0 2.9 6"0 
R 2 0"0 3.0 5.9 
N r e  f 2225 2210 2283 
NGR 1 707 567 1 750 232 1 973 111 
NSR 80 000 80 000 80 000 
Kmi n 1"70 t '78 2"23 
(~¢) 2"63 2"76 3"30 
(~init(error)) (0) 35.1 41.4 57.2 
N~t~ 96 96 120 
Nmf (w = 1.0) 1800 1843 1934 
(~0tam(error)) (0) 11.7 13.0 24.2 
(~tan(error)) (*) 12.6 15.5 32-0 
ABSFOM 1-0110 0.9099 0.6475 
PSIZERO 2.648 2.211 2.53 
RESID 9-32 11.38 32.34 
COMFOM 2.9796 2.9813 2.9269 
Rank 1 2 1 

Table 7. Tangent formula phasing for ferredoxin at 
4 ~ resolution for different magnitudes of error; s.d. is 
the standard deviation of the error in IF~I; 'rank' 
indicates the position of the phase set when ranked 

according to decreasing COMFOM 

s.d. (%) 0 4 8 
RI 0"0 2.9 5.8 
R2 0.0 2.8 5-7 
Nret 304 320 331 
NGR 29 056 33 908 36 906 
NSR 9284 9284 9284 
Krnin 0.60 0.71 1.13 
( r )  1-42 1.63 2.52 
-:+i(~'nit(error)) (o) 40.9 48.5 63.3 
Nsets 96 108 72 
Nret (w = 1"0) 281 291 294 
(~0m"(error)) (°) 7.1 15-3 34-9 
(~ta"(error)) (°) 10.0 23.5 55.9 
ABSFOM 1.2253 1.0596 0.7774 
PSIZERO 1.625 1.75 1.93 
RESID 16-60 16-02 25-68 
COMFOM 2"8727 2"7411 2-8183 
Rank 1 3 3 

Tables 6 and 7 results are given for data sets at 
resolutions of 2 and 4 A. To study the effect of errors 
in the data, tests were made without and with the 
introduction of errors. In the latter case, random 
errors normally distributed with standard deviation 
o-= 0.04 and 0.08 are independently applied to each 
structure factor. The R factors listed in Tables 6 and 
7 are defined as 

Rj = y" [IF+(error)l + lF (error)l]/E (IF+I + IFTjl), 
i i 

where F~(error) is the random error applied to F~.  
The tangent formula results in Tables 6 and 7 pertain 
to the phase set with the smallest average error 
(¢ta"(error)). Of 96 resultant phase sets at 2/~, resol- 
ution (error-free data), six gave average errors 
(~ptan(error)) less than 15.0 ° with an average error of 
11.7 ° for the phase set with the smallest average error. 
The latter set appeared to have the best combined 
figure of merit. Fig. l (a )  shows a section of the E 
map calculated from this phase set. For comparison, 
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Fig. 1. E map  calculated for  2 A ferredoxin ,  (a )  using the phase set obta ined  by appl ica t ion  o f  the tangent  formula ,  (b)  using the true 
phase  set (3328 reflections).  The  true posi t ions o f  the atoms are indicated.  
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Fig. l(b) displaces a section of the E map calculated 
from the full 2 A sphere with its 'true' phases. 

Discussion 

In a previous paper (Klop et al., 1989a), wavelength- 
independent structure-factor magnitudes and phase 
differences were calculated from artificial data and 
test results were presented in which triplet invariants 
were estimated (from IENI, IEL[and v) using the 500 
reflections with the largest lEVI values (excluding 
reflections with small heavy-atom structure-factor 
contribution). In the present paper, this procedure is 
replaced by employing wavelength-independent 
quantities of the (larger) set of reflections with [E N] > 
0-2 to estimate triplet invariants. Comparison of Table 
4 of Klop et al. (1989a) with Table 5 of the present 
paper shows that a far greater number of invariants 
with large K values is obtained with the larger set of 
reflections. 

Karle (1984) proposed the estimation of triplet 
invariants ~L from multi-wavelength data by employ- 
ing the relation 

(~L -- (pH = e l  ..~ e 2 +  e3, (8) 
L L (~H where ~ L =  ~01 + q~2 + ~ ,  = ~o~ n + ~02 n + ~03 n and 

ei = q~ ~ -  q~ in. The phase differences ei and the magni- 
tudes IF~[ and IFffl are calculated from multi- 
wavelength data via an algebraic procedure using a 
set of linear equations which requires at least three- 
wavelength data IF,~l, IF~:21 and [F~31 or the use of 
statistical estimates for some of the unknowns (Karle, 
1989). In the procedure described by Karle (1984), 
triplet invariants ~ n  are estimated according to a 
suitable probability distribution. Karle concluded 
that the estimate ~n__ 0 with reliability K ~ can be 
employed. From relationship (8), the triplet invariants 
q,L are estimated as 

( ~ L ~  $1 -I- E 2 + E 3 (9) 

with reliability K n. Estimation of invariants ~/v via 
(3) in the present paper is closely related to Karle's 
procedure since it amounts to using 

(~N __ (~H = 81 .at_ 82 + 83 (10) 

together with ~ n  ~ 0  with reliability x n. Our condi- 
tional information [E in I and 8,  however, is calculated 
from two-wavelength data via a set of non-linear 
equations. The small average errors listed in Table 2 
obtained after employing distribution (3) to estimate 

N triplet invariants • show that Karle s procedure of 
calculating the difference of two triplet invariants 
algebraically and using the estimate ~ n - 0  with 
reliability K n can also be applied in the two- 
wavelength case by using a set of non-linear 
equations. 

Reference to Table 2 shows that distributions (1) 
and (3) are comparable with respect to their ability 

to estimate triplet invariants (reflections with small 
heavy-atom contribution being excluded from the 
data set). Fortier, Weeks & Hauptman (1984) showed 
that if Hauptman's (1982a, b) joint probability distri- 
bution is applied to the case where the derivative 
consists of the native protein plus the heavy-atom 
content, then the conditional probability distributions 
for single isomorphous replacement depend on the 
scattering difference between the native protein and 
the derivative, that is on the scattering of the heavy 
atoms in the derivative. Since distribution 
p(q N IE ,I, IE I, v , [ i =  1,3]) [(1)] was derived from 
Hauptman's (1982a, b) joint probability distribution 
it is expected that (1) will depend on the difference 
in scattering power associated with the structure fac- 
tors F N and F L. Distribution P(~NIIE,u[,8,[i= 
1, 3]) [(3)] exploits the difference in scattering power 
(i.e. the scattering of the heavy atoms) associated with 
the structure factors F N and F L. The observation that 
(1) yields similar results to (3) is consistent with the 
view that (1) depends on the difference in scatter- 
ing power associated with the structure factors F N 
and F L. 

The possibility of estimating triplet invariants of 
the types (5b), (5c) or (5d) via distribution (1) is 
clearly demonstrated by the results for 2 A data in 
Table 3. Application of the tangent formula to obtain 
structure-factor phases ¢ 1,i for reflections with small 
heavy-atom contribution is somewhat disappointing 
as can be concluded from the large weighted average 
error (59.1 ° ) and the small average weight (0.29) of 
these phases for a 3 A data set. It should be remarked, 
however, that the default weighting scheme of 
M U L T A N  was employed in the tangent formula. The 
influence of an adequate weighting scheme was 
demonstrated by Pitts, Tickle, Wood & Blundell 
(1982) who attempted to employ the tangent formula 
to extend phases of avian pancreatic polypeptide at 
2.04 A resolution. The default M U L T A N  weighting 
scheme led to the introduction of spurious noise peaks 
in the electron density map. However, the use of the 
Hull & Irwin (1978) weighting scheme together with 
a device that damped large changes in the phase or 
weight of the reflections allowed phase extension 
from 2.04 to 1.37/~,. The determination of an optimal 
weighting scheme for our purposes is non-trivial and 
requires further studies. 

From Tables 6 and 7 it can be judoged that accurate 
phasing is possible not only at 2 A resolution but, 
provided that the errors in the data are not too large, 
even at the much lower resolution of 4/~. The close 
similarity of the two Fourier syntheses (Fig. 1) calcu- 
lated with true and estimated phases (obtained with 
error-free data) supports this conclusion. The set with 
the smallest phase error was always among the three 
sets with the highest combined figure of merit, which 
indicates that the conventional figures of merit are 
useful for structures with the size of small proteins. 
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The error in the phases increases slightly if the error 
in the data increases from o-=0.00 to o-=0.04 
whereas from o-=0.04 to o-=0.08 the increase in 
phase error is much stronger. In reality, however, the 
standard deviation of the (random) error will be 
smaller than 0.08, but the data will be affected by 
systematic errors as well. 

The results reported in the present paper show that 
it is possible to estimate triplet invariants from 
artificial two-wavelength data (which may be corrup- 
ted by random errors) and use the invariants in a 
multi-solution procedure to obtain structure-factor 
phases without the need to solve the heavy-atom 
structure. 
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Abstract 

The dependence of the X-ray transmission coefficient 
of a thin-film coating as a function of incidence has 
been measured in the grazing-angle range. The 
method is based on the use of a substrate Bragg 
reflection to redirect the incident or transmitted 
beams. It allows grazing incidence from both outside 
and inside the substrate to be performed. The 
geometry of the experiment is described. The results 
are interpreted by means of dynamical theory com- 
bined with an optical formalism for stratified systems. 
Experimental results and applications are compared 
with reflectivity data. 

1. Introduction 

Surface and thin-film studies using X-ray or neutrons 
in glancing-incidence geometries have undergone 
considerable development in recent years. In these 
studies, one makes use of the different signals from 
a sample when struck by a grazing beam such as, for 
instance, specular reflection in the reflectivity tech- 
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nique (Parratt, 1954), diffracted beams in grazing- 
incidence scattering (GIS) (Marra, Eisenberger & 
Cho, 1979) or even fluorescence (Brunel, 1986). 
Glancing angles are used in these techniques to limit 
the penetration depth and thus to enhance the sensi- 
tivity to the near-surface volume. Therefore, bulk 
substrate scattering is often considered as a nuisance 
in these experiments. The aim of this paper is to show 
that it is possible to take advantage of the substrate 
to perform measurements of the transmission 
coefficient which can provide useful information, 
complementing data from other techniques. 

The interpretation of the data of grazing-incidence 
techniques is often made by means of kinematical 
theory (Born approximation). Such an approximation 
is justified by the weak coupling between X-rays (or 
neutrons) and matter. When the incidence angle is 
close to the critical angle for total reflection, this 
approximation has to be removed since multiple- 
scattering effects become important. Improvement of 
simple Born approximations can be made [ e.g. distor- 
ted-wave Born approximation (Vineyard, 1982)] but 
the most general way of performing the calculations 
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